Reference documentation for deal.II version 9.6.1
 
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Physics::Transformations::Contravariant Namespace Reference

Functions

Push forward operations
template<int dim, typename Number>
Tensor< 1, dim, Number > push_forward (const Tensor< 1, dim, Number > &V, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
Tensor< 2, dim, Number > push_forward (const Tensor< 2, dim, Number > &T, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
SymmetricTensor< 2, dim, Number > push_forward (const SymmetricTensor< 2, dim, Number > &T, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
Tensor< 4, dim, Number > push_forward (const Tensor< 4, dim, Number > &H, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
SymmetricTensor< 4, dim, Number > push_forward (const SymmetricTensor< 4, dim, Number > &H, const Tensor< 2, dim, Number > &F)
 
Pull back operations
template<int dim, typename Number>
Tensor< 1, dim, Number > pull_back (const Tensor< 1, dim, Number > &v, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
Tensor< 2, dim, Number > pull_back (const Tensor< 2, dim, Number > &t, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
SymmetricTensor< 2, dim, Number > pull_back (const SymmetricTensor< 2, dim, Number > &t, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
Tensor< 4, dim, Number > pull_back (const Tensor< 4, dim, Number > &h, const Tensor< 2, dim, Number > &F)
 
template<int dim, typename Number>
SymmetricTensor< 4, dim, Number > pull_back (const SymmetricTensor< 4, dim, Number > &h, const Tensor< 2, dim, Number > &F)
 

Detailed Description

Transformation of tensors that are defined in terms of a set of contravariant bases. Rank-1 and rank-2 contravariant tensors $\left(\bullet\right)^{\sharp} = \mathbf{T}$ (and its spatial counterpart $\mathbf{t}$) typically satisfy the relation

\[   \int_{V_{0}} \nabla_{0} \cdot \mathbf{T} \; dV
     = \int_{\partial V_{0}} \mathbf{T} \cdot \mathbf{N} \; dA
     = \int_{\partial V_{t}} \mathbf{T} \cdot \mathbf{n} \; da
     = \int_{V_{t}} \nabla \cdot \mathbf{t} \; dv
\]

where $V_{0}$ and $V_{t}$ are respectively control volumes in the reference and spatial configurations, and their surfaces $\partial
V_{0}$ and $\partial V_{t}$ have the outwards facing normals $\mathbf{N}$ and $\mathbf{n}$.

Function Documentation

◆ push_forward() [1/5]

template<int dim, typename Number>
Tensor< 1, dim, Number > Physics::Transformations::Contravariant::push_forward ( const Tensor< 1, dim, Number > & V,
const Tensor< 2, dim, Number > & F )

Return the result of the push forward transformation on a contravariant vector, i.e.

\[ \chi\left(\bullet\right)^{\sharp}
   \dealcoloneq \mathbf{F} \cdot \left(\bullet\right)^{\sharp}
\]

Parameters
[in]VThe (referential) vector to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi\left( \mathbf{V} \right)$

◆ push_forward() [2/5]

template<int dim, typename Number>
Tensor< 2, dim, Number > Physics::Transformations::Contravariant::push_forward ( const Tensor< 2, dim, Number > & T,
const Tensor< 2, dim, Number > & F )

Return the result of the push forward transformation on a rank-2 contravariant tensor, i.e.

\[ \chi\left(\bullet\right)^{\sharp}
   \dealcoloneq \mathbf{F} \cdot \left(\bullet\right)^{\sharp} \cdot
\mathbf{F}^{T}
\]

Parameters
[in]TThe (referential) rank-2 tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi\left( \mathbf{T} \right)$

◆ push_forward() [3/5]

template<int dim, typename Number>
SymmetricTensor< 2, dim, Number > Physics::Transformations::Contravariant::push_forward ( const SymmetricTensor< 2, dim, Number > & T,
const Tensor< 2, dim, Number > & F )

Return the result of the push forward transformation on a rank-2 contravariant symmetric tensor, i.e.

\[ \chi\left(\bullet\right)^{\sharp}
   \dealcoloneq \mathbf{F} \cdot \left(\bullet\right)^{\sharp} \cdot
\mathbf{F}^{T}
\]

Parameters
[in]TThe (referential) rank-2 symmetric tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi\left( \mathbf{T} \right)$

◆ push_forward() [4/5]

template<int dim, typename Number>
Tensor< 4, dim, Number > Physics::Transformations::Contravariant::push_forward ( const Tensor< 4, dim, Number > & H,
const Tensor< 2, dim, Number > & F )

Return the result of the push forward transformation on a rank-4 contravariant tensor, i.e. (in index notation):

\[ \left[ \chi\left(\bullet\right)^{\sharp} \right]_{ijkl}
   \dealcoloneq F_{iI} F_{jJ}
   \left(\bullet\right)^{\sharp}_{IJKL} F_{kK} F_{lL}
\]

Parameters
[in]HThe (referential) rank-4 tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi\left( \mathbf{H} \right)$

◆ push_forward() [5/5]

template<int dim, typename Number>
SymmetricTensor< 4, dim, Number > Physics::Transformations::Contravariant::push_forward ( const SymmetricTensor< 4, dim, Number > & H,
const Tensor< 2, dim, Number > & F )

Return the result of the push forward transformation on a rank-4 contravariant symmetric tensor, i.e. (in index notation):

\[ \left[ \chi\left(\bullet\right)^{\sharp} \right]_{ijkl}
   \dealcoloneq F_{iI} F_{jJ}
   \left(\bullet\right)^{\sharp}_{IJKL} F_{kK} F_{lL}
\]

Parameters
[in]HThe (referential) rank-4 symmetric tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi\left( \mathbf{H} \right)$

◆ pull_back() [1/5]

template<int dim, typename Number>
Tensor< 1, dim, Number > Physics::Transformations::Contravariant::pull_back ( const Tensor< 1, dim, Number > & v,
const Tensor< 2, dim, Number > & F )

Return the result of the pull back transformation on a contravariant vector, i.e.

\[ \chi^{-1}\left(\bullet\right)^{\sharp}
   \dealcoloneq \mathbf{F}^{-1} \cdot \left(\bullet\right)^{\sharp}
\]

Parameters
[in]vThe (spatial) vector to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi^{-1}\left( \mathbf{v} \right)$

◆ pull_back() [2/5]

template<int dim, typename Number>
Tensor< 2, dim, Number > Physics::Transformations::Contravariant::pull_back ( const Tensor< 2, dim, Number > & t,
const Tensor< 2, dim, Number > & F )

Return the result of the pull back transformation on a rank-2 contravariant tensor, i.e.

\[ \chi^{-1}\left(\bullet\right)^{\sharp}
   \dealcoloneq \mathbf{F}^{-1} \cdot \left(\bullet\right)^{\sharp}
   \cdot \mathbf{F}^{-T}
\]

Parameters
[in]tThe (spatial) tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi^{-1}\left( \mathbf{t} \right)$

◆ pull_back() [3/5]

template<int dim, typename Number>
SymmetricTensor< 2, dim, Number > Physics::Transformations::Contravariant::pull_back ( const SymmetricTensor< 2, dim, Number > & t,
const Tensor< 2, dim, Number > & F )

Return the result of the pull back transformation on a rank-2 contravariant symmetric tensor, i.e.

\[ \chi^{-1}\left(\bullet\right)^{\sharp}
   \dealcoloneq \mathbf{F}^{-1} \cdot \left(\bullet\right)^{\sharp}
   \cdot \mathbf{F}^{-T}
\]

Parameters
[in]tThe (spatial) symmetric tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi^{-1}\left( \mathbf{t} \right)$

◆ pull_back() [4/5]

template<int dim, typename Number>
Tensor< 4, dim, Number > Physics::Transformations::Contravariant::pull_back ( const Tensor< 4, dim, Number > & h,
const Tensor< 2, dim, Number > & F )

Return the result of the pull back transformation on a rank-4 contravariant tensor, i.e. (in index notation):

\[ \left[ \chi^{-1}\left(\bullet\right)^{\sharp} \right]_{IJKL}
   \dealcoloneq F^{-1}_{Ii} F^{-1}_{Jj}
\left(\bullet\right)^{\sharp}_{ijkl} F^{-1}_{Kk} F^{-1}_{Ll}
\]

Parameters
[in]hThe (spatial) tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi^{-1}\left( \mathbf{h} \right)$

◆ pull_back() [5/5]

template<int dim, typename Number>
SymmetricTensor< 4, dim, Number > Physics::Transformations::Contravariant::pull_back ( const SymmetricTensor< 4, dim, Number > & h,
const Tensor< 2, dim, Number > & F )

Return the result of the pull back transformation on a rank-4 contravariant symmetric tensor, i.e. (in index notation):

\[ \left[ \chi^{-1}\left(\bullet\right)^{\sharp} \right]_{IJKL}
   \dealcoloneq F^{-1}_{Ii} F^{-1}_{Jj}
   \left(\bullet\right)^{\sharp}_{ijkl} F^{-1}_{Kk} F^{-1}_{Ll}
\]

Parameters
[in]hThe (spatial) symmetric tensor to be operated on
[in]FThe deformation gradient tensor $\mathbf{F} \left(
\mathbf{X} \right)$
Returns
$\chi^{-1}\left( \mathbf{h} \right)$